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Hardware and software
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Modern hardware
● The frequency race is long since over
● Power consumption and heat is a big issue
● Many cores running on reasonable frequencies
● RAM is cheap, but coherence doesn't scale
● Disks are really slow, even SSD
● Lots of separate machines

● Load balancers, SSL termination, ...
● Front end servers, database servers, authentication, ...
● Logging, backup, monitoring, ...
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Modern software
● To do more work, you need to split up your code!
● Software has only just started to adapt

● Desktop software only rarely uses multicore
– Photo, video, sound processing, etc. easy to parallellize

● Games (rendering, AI, physics, etc.), still much to do
– Imagine running the AI for each NPC as a separate thread

● Server software is easiest to parallellize
– Requests from clients can be handled independently
– One thread per client connection – possibly more
– The code that handles a request is often sequential
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Legacy software
● You rarely get to start completely from scratch

● When you do, you rarely realize that your code might 
live for 10-20 years and will need to scale 1000 times

● Code becomes legacy as soon as the person who 
wrote it has moved on to other things

● Parallelizing code can be hard - but it's 10 times 
harder if you don't fully understand what it's doing
● Side effects make code hard to understand
● Code that relies on a shared memory space must be 

completely rewritten to run on separate machines
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Erlang – our weapon of choice
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Erlang design philosophy

● Isolation of processes, no shared memory, 
message passing, error handling via links
● A process can't destroy the state of another process

● Mostly functional programming, few side effects 
(messages), easy to read and reason about

● Many small components, no shared state
● Service oriented software design
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Erlang and multicore

● The Erlang philosophy is a great fit for multicore
● No need for locks or synchronized sections
● No shared memory – a process can run anywhere

● Erlang gives you built-in support for multicore, but 
can also run the same concurrent code on a 
single-core machine

● Erlang lets you run processes on separate 
machines over the network just as easily as on a 
single machine, without rewriting any of the code
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Erlang and performance

● ”Erlang is slow, we need to use C++”
● Let them believe it - you'll have one less competitor

● Of course you can beat Erlang's performance
● ...If you want to spend 5 years optimizing your C++, 

and reinvent half of Erlang while you're doing it

● There is no such thing as ”fast”, only ”fast enough”
● Erlang lets you get close enough to the best 

possible performance in a very short time
● The code is clean and easy to modify further
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Getting concurrency
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What is time?

● You need to relearn how to think about time
● It takes experience – you have to build a new intuition

● Clocks are mostly useless; as in relativistic physics 
there is no global ”right now”
● Only messages and replies can be relied on

– Causal relationships: if B, then A must have happened
– Logical time: discrete points, partial order

● Even the smallest step in your program can take 
anything from a nanosecond to several hours
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What is concurrency?

● If two things can potentially happen at the same 
time, they are said to be concurrent
● Maybe they usually happen in a certain order, but if a 

delay happens, they may end up being simultaneous

● Scheduling and delays can happen at any time, 
and for any length of time

● The behaviour under real load will not be as in 
development - if the program can fail, it will!
● ”Fixing” a timing problem by adding a pause is broken 

from start, and will come back to bite you later
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Designing for concurrency
● Keep it simple!

● Knowing that it works is always more important
● Fail fast! Let it crash! Write to logs, not stdout!

● Think about your program as a set of services
● Within each service, let each activity be a process
● No process should know more than it needs to know
● Always keep in mind that you may want to split the 

different parts to run on separate machines
● Avoid traditional ”object-oriented” design, which can 

lead to a spaghetti of shared data dependencies
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Programming techniques
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Separate all the things

● Traditional optimizations try to do as much as 
possible at the same time, in a single thread
● For example, loop over all items in an array and do a 

whole bunch of different things to each item
● This makes it impossible to utilize multicore, since you 

cannot easily split the code into separate processes

● ”Optimizing” by doing several unrelated things in 
the same piece of code, just because you have the 
information available, is a really bad idea
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Controlling your parallelism

● Handling a million requests in parallel is great. 
Making a million errors in parallel is bad!
● Bugs, resource limits (file descriptors, memory)
● If one worker fails, the others will probably fail too

– For one thing, this will flood your logs
● Circuit breaker pattern

● Make features configurable: runtime on/off switch
● Log Pids or session IDs so you can follow what a 

session has done, across services
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Splitting shared resources
● When parallelizing, you will often find a few central 

things that all your processes need to access
● Typical example: global counters (customer IDs, etc.)
● Performance bottleneck – everything gets serialized
● Single point of failure – if it goes offline, nothing works

● Must eliminate the sharing. Think outside the box.
● Global server handing out number series to each front 

end server on demand, enough for hours or days
● Does the application require guaranteed uniqueness or 

just very low probability of collisions? Use a hash!



12-05-09 18

Explicit sequencing
● You sometimes find that parts of your system need 

to be explicitly serialized to avoid race conditions
● Typically, when more than one part can make 

active decisions. E.g., a hotel booking site:
● Customer sees room is available and presses ”book”
● Hotel staff corrects a mistake at the same time
● As long as one of them gets an error message and has 

to try again, it's all right

● Often handled by database transactions, but you 
may need to do it all by yourself
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Persistent storage
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Most systems need a database

● Database = global shared memory = bad!
● All of the code assumes it can access all of the data
● Often leads to bad code with lots of dependencies

● Databases usually imply transactions
● Transactions imply bottlenecks (locks or collisions)
● You have to weigh consistency against bottlenecks

● A file system is no exception: it's a kind of 
database (hierarchical, good at ”file-ish” things, 
bad at other things, usually no transactions)



12-05-09 21

Databases and distribution
● You need more than one machine, and more than 

one copy of your data, to guarantee availability
● The famous ”CAP theorem”

● Consistency, Availability, Partition tolerance
– You can't have all 3 at the same time
– You will get partitioning; in a real system, shit happens
– You need availability, or you will be out of business

● Transactions need to (mostly) go away
● Eventual consistency – allow temporary inconsistency
● No simple rules for writing transactionless systems
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SLA levels
● Service Level Agreement: ”we promise that...”
● Which of your services must always be available 

to keep customers happy, and which are ”extras”?
● Don't let non-critical stuff bring your system down

● You need to know which errors are critical, and 
which are just ”bad” but can be fixed
● Multiple entries with the same data. Maybe customer 

posted same order twice. Detect and remove duplicate.
● Sold a book that was out of stock? Mail customer about 

delay, order more books from publisher.
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Final words
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Concurrency is hard – or not

● Most people aren't used to thinking about 
concurrent programming – it takes some practice

● On the other hand, as a human you deal with 
concurrency every day
● Working, drinking coffee, answering a mail, talking to 

someone, not bumping into people in the corridor, 
biking to the gym without getting run over by a car, 
watching TV and eating cheetos while texting a friend...

● Erlang is great for experimenting and getting a 
feeling for concurrency – play around!
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We live in exciting times
● Few textbook examples of how to solve typical 

problems without resorting to transactions
● Huge demand for systems that scale well and 

remain available despite partial failures
● Most situations need a combination of engineering 

and domain specific workarounds
● High performance parallel (scientific) computing, 

distributed web services, games, AI and robotics, 
etc., have very different requirements. Pick a 
language that suits the problem.



12-05-09 26

We're always hiring...

http://www.klarna.com/careers
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