
Concurrency and the real world

Richard Carlsson



12-05-09 2

Hardware and software



12-05-09 3

Modern hardware
● The frequency race is long since over
● Power consumption and heat is a big issue
● Many cores running on reasonable frequencies
● RAM is cheap, but coherence doesn't scale
● Disks are really slow, even SSD
● Lots of separate machines

● Load balancers, SSL termination, ...
● Front end servers, database servers, authentication, ...
● Logging, backup, monitoring, ...



12-05-09 4

Modern software
● To do more work, you need to split up your code!
● Software has only just started to adapt

● Desktop software only rarely uses multicore
– Photo, video, sound processing, etc. easy to parallellize

● Games (rendering, AI, physics, etc.), still much to do
– Imagine running the AI for each NPC as a separate thread

● Server software is easiest to parallellize
– Requests from clients can be handled independently
– One thread per client connection – possibly more
– The code that handles a request is often sequential



12-05-09 5

Legacy software
● You rarely get to start completely from scratch

● When you do, you rarely realize that your code might 
live for 10-20 years and will need to scale 1000 times

● Code becomes legacy as soon as the person who 
wrote it has moved on to other things

● Parallelizing code can be hard - but it's 10 times 
harder if you don't fully understand what it's doing
● Side effects make code hard to understand
● Code that relies on a shared memory space must be 

completely rewritten to run on separate machines



12-05-09 6

Erlang – our weapon of choice



12-05-09 7

Erlang design philosophy

● Isolation of processes, no shared memory, 
message passing, error handling via links
● A process can't destroy the state of another process

● Mostly functional programming, few side effects 
(messages), easy to read and reason about

● Many small components, no shared state
● Service oriented software design



12-05-09 8

Erlang and multicore

● The Erlang philosophy is a great fit for multicore
● No need for locks or synchronized sections
● No shared memory – a process can run anywhere

● Erlang gives you built-in support for multicore, but 
can also run the same concurrent code on a 
single-core machine

● Erlang lets you run processes on separate 
machines over the network just as easily as on a 
single machine, without rewriting any of the code



12-05-09 9

Erlang and performance

● ”Erlang is slow, we need to use C++”
● Let them believe it - you'll have one less competitor

● Of course you can beat Erlang's performance
● ...If you want to spend 5 years optimizing your C++, 

and reinvent half of Erlang while you're doing it

● There is no such thing as ”fast”, only ”fast enough”
● Erlang lets you get close enough to the best 

possible performance in a very short time
● The code is clean and easy to modify further



12-05-09 10

Getting concurrency



12-05-09 11

What is time?

● You need to relearn how to think about time
● It takes experience – you have to build a new intuition

● Clocks are mostly useless; as in relativistic physics 
there is no global ”right now”
● Only messages and replies can be relied on

– Causal relationships: if B, then A must have happened
– Logical time: discrete points, partial order

● Even the smallest step in your program can take 
anything from a nanosecond to several hours



12-05-09 12

What is concurrency?

● If two things can potentially happen at the same 
time, they are said to be concurrent
● Maybe they usually happen in a certain order, but if a 

delay happens, they may end up being simultaneous

● Scheduling and delays can happen at any time, 
and for any length of time

● The behaviour under real load will not be as in 
development - if the program can fail, it will!
● ”Fixing” a timing problem by adding a pause is broken 

from start, and will come back to bite you later



12-05-09 13

Designing for concurrency
● Keep it simple!

● Knowing that it works is always more important
● Fail fast! Let it crash! Write to logs, not stdout!

● Think about your program as a set of services
● Within each service, let each activity be a process
● No process should know more than it needs to know
● Always keep in mind that you may want to split the 

different parts to run on separate machines
● Avoid traditional ”object-oriented” design, which can 

lead to a spaghetti of shared data dependencies



12-05-09 14

Programming techniques



12-05-09 15

Separate all the things

● Traditional optimizations try to do as much as 
possible at the same time, in a single thread
● For example, loop over all items in an array and do a 

whole bunch of different things to each item
● This makes it impossible to utilize multicore, since you 

cannot easily split the code into separate processes

● ”Optimizing” by doing several unrelated things in 
the same piece of code, just because you have the 
information available, is a really bad idea



12-05-09 16

Controlling your parallelism

● Handling a million requests in parallel is great. 
Making a million errors in parallel is bad!
● Bugs, resource limits (file descriptors, memory)
● If one worker fails, the others will probably fail too

– For one thing, this will flood your logs
● Circuit breaker pattern

● Make features configurable: runtime on/off switch
● Log Pids or session IDs so you can follow what a 

session has done, across services



12-05-09 17

Splitting shared resources
● When parallelizing, you will often find a few central 

things that all your processes need to access
● Typical example: global counters (customer IDs, etc.)
● Performance bottleneck – everything gets serialized
● Single point of failure – if it goes offline, nothing works

● Must eliminate the sharing. Think outside the box.
● Global server handing out number series to each front 

end server on demand, enough for hours or days
● Does the application require guaranteed uniqueness or 

just very low probability of collisions? Use a hash!



12-05-09 18

Explicit sequencing
● You sometimes find that parts of your system need 

to be explicitly serialized to avoid race conditions
● Typically, when more than one part can make 

active decisions. E.g., a hotel booking site:
● Customer sees room is available and presses ”book”
● Hotel staff corrects a mistake at the same time
● As long as one of them gets an error message and has 

to try again, it's all right

● Often handled by database transactions, but you 
may need to do it all by yourself



12-05-09 19

Persistent storage



12-05-09 20

Most systems need a database

● Database = global shared memory = bad!
● All of the code assumes it can access all of the data
● Often leads to bad code with lots of dependencies

● Databases usually imply transactions
● Transactions imply bottlenecks (locks or collisions)
● You have to weigh consistency against bottlenecks

● A file system is no exception: it's a kind of 
database (hierarchical, good at ”file-ish” things, 
bad at other things, usually no transactions)



12-05-09 21

Databases and distribution
● You need more than one machine, and more than 

one copy of your data, to guarantee availability
● The famous ”CAP theorem”

● Consistency, Availability, Partition tolerance
– You can't have all 3 at the same time
– You will get partitioning; in a real system, shit happens
– You need availability, or you will be out of business

● Transactions need to (mostly) go away
● Eventual consistency – allow temporary inconsistency
● No simple rules for writing transactionless systems



12-05-09 22

SLA levels
● Service Level Agreement: ”we promise that...”
● Which of your services must always be available 

to keep customers happy, and which are ”extras”?
● Don't let non-critical stuff bring your system down

● You need to know which errors are critical, and 
which are just ”bad” but can be fixed
● Multiple entries with the same data. Maybe customer 

posted same order twice. Detect and remove duplicate.
● Sold a book that was out of stock? Mail customer about 

delay, order more books from publisher.



12-05-09 23

Final words



12-05-09 24

Concurrency is hard – or not

● Most people aren't used to thinking about 
concurrent programming – it takes some practice

● On the other hand, as a human you deal with 
concurrency every day
● Working, drinking coffee, answering a mail, talking to 

someone, not bumping into people in the corridor, 
biking to the gym without getting run over by a car, 
watching TV and eating cheetos while texting a friend...

● Erlang is great for experimenting and getting a 
feeling for concurrency – play around!



12-05-09 25

We live in exciting times
● Few textbook examples of how to solve typical 

problems without resorting to transactions
● Huge demand for systems that scale well and 

remain available despite partial failures
● Most situations need a combination of engineering 

and domain specific workarounds
● High performance parallel (scientific) computing, 

distributed web services, games, AI and robotics, 
etc., have very different requirements. Pick a 
language that suits the problem.



12-05-09 26

We're always hiring...

http://www.klarna.com/careers


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

